BAYERN Abitur 1988 Mathematik Grundkurs

Infinitesimalrechnung I

Gegeben ist die Funktion

$$h: x \mapsto \ln\left(\frac{x^2}{4} + 1\right)$$

mit maximaler Definitionsmenge \mathbb{D}_h . Der Graph von h wird mit G_h bezeichnet. Gegeben ist ferner für $\mathbb{D}_f = \mathbb{R} \setminus \{0\}$ die Funktion

$$f: x \mapsto \ln \frac{x^2}{4}.$$

- 1. Wir untersuchen zuerst die Funktion h.
 - (a) Ermitteln Sie \mathbb{D}_h und untersuchen Sie G_h auf Symmetrie sowie auf gemeinsame Punkte mit der x-Achse. (4 BE)
 - (b) Bestimmen Sie Lage und Art des Extrempunktes von G_h . (4 BE)
 - (c) Berechnen Sie h(1), h(2), h(3), h(6) und zeichnen Sie unter Verwendung der gewonnenen Ergebnisse den Graphen G_h im Bereich $-6 \le x \le 6$ (Längeneinheit 1 cm). (4 BE)
- 2. Wir betrachten nun die Funktion f.
 - (a) Bestätigen Sie, dass G_f symmetrisch zur y-Achse verläuft, und untersuchen Sie das Verhalten von f in der Umgebung von x = 0. (3 BE)
 - (b) Berechnen Sie f(1), f(2), f(3), f(6) und zeichnen Sie G_f in das Koordinatensystem von Teilaufgabe 1c ein. (4 BE)
- 3. Eine Gerade mit der Gleichung x=a schneidet für $a\neq 0$ den Graphen G_h im Punkt A und den Graphen G_f im Punkt B. Zeigen Sie, dass der Term $\ln\frac{a^2+4}{a^2}$ die Entfernung \overline{AB} der beiden Punkte angibt.

Weisen Sie nach, dass für $a \to +\infty$ die Entfernung \overline{AB} gegen Null geht. (7 BE)

- 4. (a) Zeigen Sie, dass $F: x \mapsto -2x + x \cdot \ln \frac{x^2}{4}$ mit $x \in \mathbb{D}_f$ eine Stammfunktion von f ist. (4 BE)
 - (b) In welchen Punkten schneidet die Gerade mit der Gleichung y=2 den Graphen G_f ?

Berechnen Sie den Inhalt J der im ersten Quadranten liegenden endlichen Fläche, die von den beiden Koordinatenachsen, von der Geraden y=2 und von G_f begrenzt wird. (10 BE)

Infinitesimalrechnung II

Gegeben ist für $a \in \mathbb{R}$ die Schar von Funktionen

$$f_a: x \mapsto \frac{x^2 + ax}{x+1}$$

mit maximaler Definitionsmenge \mathbb{D} . Die zugehörigen Graphen werden mit G_a bezeichnet.

- 1. Wir setzen zunächst voraus, dass $a \neq 1$ ist.
 - (a) Bestimmen Sie \mathbb{D} und in Abhängigkeit von a die Nullstellen von f_a . (3 BE)
 - (b) Zeigen Sie, dass in $\mathbb D$ gilt: $f_a(x) = x + (a-1) \frac{a-1}{x+1}$. Geben Sie die Gleichungen aller Asymptoten von G_a an. (5 BE)
 - (c) Berechnen Sie die Ableitung $f'_a(x)$. Zeigen Sie, dass jeder Graph G_a entweder zwei Stellen oder keine Stelle mit horizontaler Tangente besitzt (Fallunterscheidung bezüglich a). (8 BE)
 - (d) Skizzieren Sie unter Verwendung der bisherigen Ergebnisse für a=3 den Graphen G_3 im Bereich [-5;5]. Zeichnen Sie auch die dazugehörigen Asymptoten ein (Längeneinheit 1 cm). (5 BE)
- 2. Nun wird für a=1 die Funktion f_1 betrachtet. Vereinfachen Sie den Funktionsterm $f_1(x)$, und zeichnen Sie den Graphen G_1 in ein neues Koordinatensystem ein. (4 BE)
- 3. Gegeben ist für x > -1 die Funktion $F: x \mapsto \frac{1}{2}x^2 + 2x 2\ln(x+1) + 5$.
 - (a) Weisen Sie nach, dass F eine Stammfunktion von f_3 ist. (4 BE)
 - (b) Berechnen Sie den Inhalt A(b) der im ersten Quadranten liegenden endlichen Fläche, die von G_3 , der dazugehörigen schrägen Asymptote sowie den Geraden x=0 und x=b mit b>0 begrenzt wird (siehe Teilaufgabe 1d). (8 BE)
 - (c) Untersuchen Sie das Verhalten von A(b) für $b \to \infty$. (3 BE)

Analytische Geometrie I

In einem kartesischen Koordinatensystem sind die Punkte $A(a_1|0|2)$, B(5|8|-2), C(1|9|2) und D(8|6|3) gegeben.

Zeigen Sie, dass es für jeden Wert a₁ ∈ R genau eine Ebene gibt, die die Punkte A, B und C enthält.
 Im Folgenden sei a₁ = 1.

- 2. (a) Stellen Sie in Normalenform eine Gleichung der Ebene E_1 auf, die durch die Punkte A, B und C geht. (5 BE)
 - (b) Von D wird das Lot auf E_1 gefällt; es trifft E_1 im Punkt F. Fertigen Sie eine Skizze an. Berechnen Sie die Koordinaten des Lotfußpunktes F und die Länge der Lotstrecke [DF]. Wie groß ist der spitze Winkel (in Grad, auf zwei Dezimalen gerundet), den die Lotgerade DF und die Gerade CD einschließen?

[Teilergebnis: F(4|6|-1)] (9 BE)

- (c) Zeigen Sie, dass F auf der Geraden AB liegt. In welchem Verhältnis teilt F die Strecke [AB]? Ist F äußerer Teilpunkt? (5 BE)
- 3. Die Ebene E_2 geht durch den Punkt C und steht senkrecht auf der Geraden FC (siehe Teilaufgabe 2b).
 - (a) Geben Sie eine Gleichung von E_2 in Normalenform und eine in Parameterform an. (7 BE)
 - (b) Berechnen Sie allgemein den Abstand eines Punktes der Geraden AB von der Ebene E_2 . Deuten Sie das Ergebnis geometrisch. (8 BE)

Analytische Geometrie II

In einem kartesischen Koordinatensystem sind die Punkte A(3|8|-2), B(4|10|-4) und $T_t(-t|0|6t)$ mit $t \in \mathbb{R}$ sowie die Ebene

$$E: ec{x} = egin{pmatrix} 1 \ -1 \ 6 \end{pmatrix} + \lambda egin{pmatrix} -2 \ 1 \ 0 \end{pmatrix} + \mu egin{pmatrix} 2 \ 0 \ 1 \end{pmatrix}$$

mit $\lambda, \mu \in \mathbb{R}$ gegeben.

- 1. (a) Für welche Werte t bestimmen die Punkte A, B und T_t eindeutig eine Ebene, die die drei Punkte enthält? (7 BE)
 - (b) Der Parameter t sei nun so gewählt, dass der Punkt T_t auf der Geraden g = AB liegt. In welchem Verhältnis teilt dann der Punkt T_t die Strecke [AB]? Skizzieren Sie, wie die drei Punkte zueinander liegen. (6 BE)
- 2. (a) Ermitteln Sie eine Gleichung der Ebene E in Normalenform. Zeigen Sie, dass die Gerade g=AB auf E senkrecht steht. [Mögliches Ergebnis für $E: x_1+2x_2-2x_3+13=0$] (5 BE)
 - (b) Weisen Sie nach, dass der Punkt Q(3|-1|7) in der Ebene E liegt und bestimmen Sie unter Verwendung dieser Tatsache den Abstand des Punktes Q von der Geraden g. (10 BE)
- 3. (a) Berechnen Sie den Abstand des Punktes A von der Ebene E. (4 BE)
 - (b) A' sei der Spiegelpunkt von A bezüglich der Ebene E. Stellen Sie in Normalenform eine Gleichung der Ebene E_1 auf, die parallel zur Ebene E durch A' verläuft. (8 BE)

Wahrscheinlichkeitsrechnung I

Bei einem Spiel wird eine Urne verwendet, in der sich 10 gleicharitge Kugeln befinden; 4 davon sind rot und 6 blau. Es werden 3 Kugeln mit einem Griff entnommen. Das Spiel hat man gewonnen, wenn unter den 3 Kugeln mindestens eine rot ist.

- 1. (a) Berechnen Sie die Gewinnwahrscheinlichkeit p. [Ergebnis: $p = \frac{5}{6}$] (4 BE)
 - (b) Wie groß wäre die Gewinnwahrscheinlichkeit, wenn in Abhängigkeit des Spiels die Kugeln nacheinander mit Zurücklegen gezogen würden? (4 BE)
- 2. Das Spiel wird nun 15mal nacheinander durchgeführt; dabei werden nach jedem Spiel die 3 gezogenen Kugeln wieder in die Urne zurückgemischt.
 - (a) Ermitteln Sie die Wahrscheinlichkeit,
 - i. genau 10 Spiele, (3 BE)
 - ii. mindestens 10 Spiele zu gewinnen. (4 BE)
 - (b) Für welche Anzahl k ist die Wahrscheinlichkeit, genau k Spiele zu gewinnen, am größten? (4 BE)
 - (c) Ist es günstiger, auf das Ereignis E:= "12 oder 13 Spiele werden gewonnen" oder auf das Gegenereignis \overline{E} zu wetten? (6 BE)
- 3. Wie viele Spiele muss man mindestens durchführen, damit die Wahrscheinlichkeit, wenigstens einmal zu gewinnen, mindestens 97% beträgt? (7 BE)
- 4. Jemand meint, dass der Urneninhalt manipuliert wurde. Um sich zu vergewissern, dass die Gewinnwahrscheinlichkeit nach wie vor $p=\frac{5}{6}$ ist, wird das Spiel 200mal durchgeführt. Wenn dabei die Anzahl der Gewinnspiele mindestens 159 und höchstens 175 beträgt, bleibt man bei $p=\frac{5}{6}$, sonst nicht. Mit welcher Wahrscheinlichkeit nimmt man eine Manipulation an, obwohl der Urneninhalt nicht verändert wurde? (8 BE)

Wahrscheinlichkeitsrechnung II

Der nebenstehend abgebildete Laplace-Glücksspielautomat "3 hoch 4" erzeugt bei jedem Spiel aus den Ziffern 1, 2, 3 eine vierstellige Zahl. Dabei erscheint an jeder der Stellen A, B, C, D eine der Ziffern 1, 2, 3 mit gleicher Wahrscheinlichkeit. Jede Ziffernfolge ist gleich wahrscheinlich. Unter E_i mit $i \in \{0, 1, 2, 3\}$ versteht man das Ereignis: "Die Ziffer 1 erscheint bei jedem Spiel genau i-mal".

- 1. Es wird einmal gespielt.
 - (a) Bestimmen Sie die Wahrscheinlichkeit der Ereignisse E_1 und E_2 .

 [Zur Kontrolle: $P(E_2) = \frac{24}{81}$] (4 BE)
 - (b) Ermitteln Sie die Wahrscheinlichkeit für die Ereignisse:

F := "Es erscheinen lauter gleiche Ziffern",

G := "An der Stelle B erscheint Ziffer 1".

Sind F und G unabhängig? (5 BE)

- (c) Berechnen Sie die Wahrscheinlichkeit $P(\overline{F} \cap G)$. (3 BE)
- (d) Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Quersumme der vierstelligen Zahl 6 beträgt. (6 BE)
- (e) Wie groß ist die Wahrscheinlichkeit des Ereignisses: "In der vierstelligen Zahl sind genau 2 gleiche gleiche Ziffern"? (4 BE)
- 2. (a) Wie groß ist die Wahrscheinlichkeit, dass bei 10 Spielen keine Zahl aus E_2 erzeugt wird? (4 BE)
 - (b) Wie oft muss man mindestens spielen, damit mit einer Wahrscheinlichkeit von mehr als 99% wenigstens einmal eine Zahl aus E_2 erzeugt wird? (6 BE)
- 3. Nach einer Reparatur, die möglicherweise unsachgemäß ausgeführt wurde, soll getestet werden, ob der Glücksspielautomat noch ein Laplace-Gerät ist. Dazu wird folgende Entscheidungsregel vereinbart: Wenn bei 100 Spielen eine Zahl aus E_2 mindesten 25mal und höchstens 34mal erscheint, dann wird die Laplace-Wahrscheinlichkeit angenommen, andernfalls abgelehnt. Mit welcher Wahrscheinlichkeit wird der Glücksspielautomat irrtümlich für ein Laplace-Gerät gehlaten, obwohl eine Zahl aus E_2 nur mit einer Wahrscheinlichkeit p=0,20 erzeugt wird? (8 BE)