Abi 05 Lsg Ana I

1. a)
$$1 - (ln(x))^2 = 0$$

$$1 = (ln(x))^2$$

$$\pm 1 = ln(x)$$

$$e^{\pm 1} = x$$

$$x_1 = \frac{1}{e}; \quad x_2 = e$$

$$\lim_{x \to 0} 1 - (\underbrace{ln(x)}_{x \to -\infty})^2 = -\infty$$

$$\lim_{x \to \infty} 1 - (\underbrace{ln(x)}_{x \to \infty})^2 = -\infty$$

b)
$$f'(x) = -2ln(x) \cdot \frac{1}{x} = -\frac{2ln(x)}{x}$$

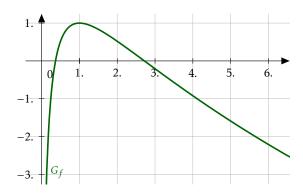
$$f'(x) = 0 \Rightarrow x_3 = 1$$

	0 < x < 1	x = 1	1 < x
f'(x)	+	0	-
G_f	7	HOP	7

$$f(1) = 1 - 0^2 = 1$$

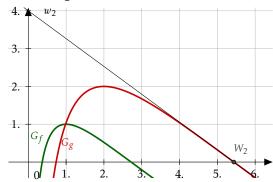
$$W_f =]-\infty;1]$$

c)
$$f(e) = 0$$
 (siehe a).


Bestimmung von m: $f'(e) = -\frac{2}{e}$.

Bestimmung von t:

$$0 = -\frac{2}{e} \cdot e + t \Longrightarrow t = 2$$


$$y = -\frac{2}{e} \cdot x + 2$$

d) Graph:

2. a)
$$\int_{\frac{1}{e}}^{e} f(x)dx = \left[x(\ln(x) - 1)^{2}\right]_{\frac{1}{e}}^{e} = -e \cdot 0 + \frac{1}{e} \cdot (-2)^{2} = \frac{4}{e}$$

- b) Es gilt: F(e) = 0, was dem Flächeninhalt $\int_{e}^{e} f(x)dx$ entspricht.
- c) $\lim_{x\to 0^+} \underbrace{-x}_{\to 0} \underbrace{(\ln(x)-1)^2}_{\to -\infty} = 0$, da der Logarithmus (auch der quadratische) langsamer wächst als jede Potenz von x.
- 3. a) Jeder Bildpunkt hat die doppelten Koordinaten: P'(2a|2b). Es findet also eine Streckung mit Faltor 2 sowohl in x- wie in y-Richtung statt.

b) $f_2(x) = 2(1 - (ln(\frac{1}{2}x))^2)$